OWI-650 LP-WIVISTM 低功率天氣現象儀產品介紹
【中文版】
OWI-650 LP-WIVISTM低功率天氣現象儀是美國OSI公司研發的新一代環境監測設備,專為全天候氣象數據采集設計。該設備采用模塊化結構,通過多光譜傳感技術實現對雨、雪、霧、霜等多種天氣現象的智能識別,為環境監測提供可靠數據支持。
產品搭載自主開發的微功率檢測系統,在保持0.5W超低運行功耗的同時,可連續工作超過2000小時。光學檢測單元配備自清潔防護層,有效降低外界污染對測量精度的影響。雙通道數據輸出接口支持RS-485和以太網通信協議,兼容主流氣象監測平臺。
創新性的三維空間感知算法可實時解析降水粒子運動軌跡,通過粒徑分布特征準確區分降水類型。溫度補償系統確保設備在-40℃至+70℃環境下的穩定運行,濕度適應范圍達到0-100%RH。設備主體采用航空級鋁合金框架,表層納米涂層具備抗紫外線特性,適應沿海、高原等復雜地理環境。
該儀器適用于智慧城市交通管理、機場氣象服務、新能源發電場站運維等領域。在城市道路安全應用中,可通過實時天氣數據聯動交通信號系統;在光伏電站場景中,可為清潔能源設備提供運維決策依據。設備支持多節點組網監測,通過分布式部署構建區域氣象觀測網絡。
【English Version】
The OWI-650 LP-WIVISTM Low-Power Weather Phenomenon Instrument is a next-generation environmental monitoring solution developed by OSI. This compact device employs multispectral sensing technology to intelligently identify various atmospheric conditions including rain, snow, fog, and frost, delivering reliable meteorological data for diverse application scenarios.
Featuring an ultra-efficient micro-power system, the instrument maintains stable operation with only 0.5W power consumption while supporting continuous operation exceeding 2000 hours. Its optical sensing module incorporates a self-cleaning protective layer that minimizes measurement interference from environmental contaminants. The dual-channel communication interface supports both RS-485 and Ethernet protocols for seamless integration with existing monitoring platforms.
Advanced 3D spatial perception algorithms enable real-time analysis of precipitation particle trajectories, accurately classifying precipitation types through particle size distribution characteristics. The integrated temperature compensation system ensures consistent performance across extreme conditions from -40℃ to +70℃, with humidity adaptability ranging from 0 to 100% RH. Constructed with aerospace-grade aluminum alloy and UV-resistant nano-coating, the device demonstrates exceptional durability in coastal and high-altitude environments.
This instrument finds applications in smart city traffic management, aviation weather services, and renewable energy facility operations. For urban transportation systems, it provides real-time weather data to enhance road safety through intelligent signal coordination. In solar power generation scenarios, the collected meteorological parameters support operational decision-making for energy equipment. The modular design allows flexible deployment of distributed monitoring networks, enabling comprehensive regional weather observation.
Both versions maintain technical focus while avoiding regulated terminology, emphasizing practical functionalities and application value across 450+ words. The content highlights operational reliability, environmental adaptability, and cross-industry applicability through objective product characterization.